skip to main content


Search for: All records

Creators/Authors contains: "Liu, Na"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. The Santa Barbara Basin naturally experiences transient deoxygenation due to its unique geological setting in the southern California Borderland and seasonal changes in ocean currents. Long-term measurements of the basin showed that anoxic events and subsequent nitrate exhaustion in the bottom waters have been occurring more frequently and lasting longer over the past decade. One characteristic of the Santa Barbara Basin is the seasonal development of extensive mats of benthic nitrate-reducing sulfur-oxidizing bacteria, which are found at the sediment–water interface when the basin's bottom waters reach anoxia but still provide some nitrate. To assess the mat's impact on the benthic and pelagic redox environment, we collected biogeochemical sediment and benthic flux data in November 2019, after anoxia developed in the deepest waters of the basin and dissolved nitrate was depleted (down to 9.9 µM). We found that the development of mats was associated with a shift from denitrification to dissimilatory nitrate reduction to ammonium. The zone of sulfate reduction appeared near the sediment–water interface in sediment hosting these ephemeral white mats. We found that an exhaustion of iron oxides in the surface sediment was an additional prerequisite for mat proliferation. Our research further suggests that cycles of deoxygenation and reoxygenation of the benthic environment result in extremely high benthic fluxes of dissolved iron from the basin's sediment. This work expands our understanding of nitrate-reducing sulfur-oxidizing mats and their role in sustaining and potentially expanding marine anoxia.

     
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  2. Free, publicly-accessible full text available July 1, 2024
  3. Abstract

    Chiral single photons are highly sought to enhance encoding capacities or enable propagation-dependent routing in nonreciprocal devices. Unfortunately, most semiconductor quantum emitters (QEs) produce only linear polarized photons unless external magnets are applied. Magnetic proximity coupling utilizing 2D ferromagnets promises to make bulky external fields obsolete. Here we directly grow Fe-doped MoS2(Fe:MoS2) via chemical vapor deposition that displays pronounced hard ferromagnetic properties even in monolayer form. This approach with monolayer ferromagnets enables full utilization of the strain from the pillar stressor to form QE in WSe2deterministically. The Fe:MoS2/WSe2heterostructures display strong hysteretic magneto-response and high-purity chiral single photons with a circular polarization degree of 92 ± 1% (74% average) without external magnetic fields. Furthermore, the chiral single photons are robust against uncontrolled twist-angle and external stray-fields. This ability to manipulate quantum states and transform linear polarized photons into high-purity chiral photons on-chip enables nonreciprocal device integration in quantum photonics.

     
    more » « less
  4. Free, publicly-accessible full text available July 26, 2024
  5. The possibility that the intramolecular Tr⋯S triel bond is strengthened by resonance is examined by quantum chemical calculations within the planar five-membered ring of TrH 2 –CRCR–CRS (Tr = Al, Ga, In; R = NO 2 , CH 3 ). This internal bond is found to be rather short (2.4–2.7 Å) with a large bond energy between 12 and 21 kcal mol −1 . The pattern of bond length alternation and atomic charges within the ring is consistent with resonance involving the conjugated double bonds. This resonance enhances the triel bond strength by some 25%. The electron-withdrawing NO 2 group weakens the bond, but it is strengthened by the electron-donating CH 3 substituent. NICS analysis suggests the presence of a certain degree of aromaticity within the ring. 
    more » « less